PUTNAM PRACTICE SET 11

PROF. DRAGOS GHIOCA

Problem 1. Let p > 3 be a prime number. Prove that at least one of the numbers from the following list:

$$\frac{3}{p^2}, \frac{4}{p^2}, \frac{5}{p^2}, \cdots, \frac{p-2}{p^2}$$

can be written as a sum $\frac{1}{x} + \frac{1}{y}$ for some positive integers x and y.

Problem 2. If r > s > 0 and a > b > c > 0, prove that

$$a^{r}b^{s} + b^{r}c^{s} + c^{r}a^{s} \ge a^{s}b^{r} + b^{s}c^{r} + c^{s}a^{r}.$$

Problem 3. Find all $f \in \mathbb{C}[x]$ with the property that for each $x \in \mathbb{C}$, we have $f(x)f(2x^2) = f(2x^3 + x)$.

Problem 4. Let $n \in \mathbb{N}$ and let $S_n = \{1, \ldots, n\}$. Assume the set $M \subseteq S_n \times S_n$ satisfies the following properties:

• if $(j, k) \in M$ then $1 \le j < k \le n$; and

• if $(j,k) \in M$ then for each $i \in S_n$, we have that $(k,i) \notin M$.

What is the largest possible cardinality of the set M?